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Abstract

Flood frequency data from the eastern Australian states of New South Wales (NSW)
and Queensland (Qld) were investigated to determine the magnitude and extent of multi-
decadal variability (nonhomogeneity) in flood risk. Some flood data from NSW were found
to be systematically in error because daily-read discharges were used instead of instanta-
neous peak discharges. A new approach, based on the method of maximum likelihood,
was developed to overcome the potential artefacts introduced by the use of daily-read
data in flood frequency analysis. However, it was shown for flood data typical of NSW,
the treatment of daily-read data as instantaneous peaks did not introduce sufficiently
large quantile bias and loss of mean-squared-error performance to warrant use of the new
estimation method.

The flood data were stratified by Interdecadal Pacific Oscillation (IPO) value and flood
frequency analyses performed on the IPO-stratified flood data — the IPO is a climate in-
dex of Pacific Ocean sea surface temperature anomalies, which displays variability on a
long-term (multidecadal) time scale. The IPO was found to modulate the flood risk in
NSW and southern Qld, with flood quantiles being increased, on average, by approxi-
mately 1.7 times during IPO-negative epochs, whereas little effect was detected for sites
in northeast Qld located approximately north of the Tropic of Capricorn. The IPO mod-
ulation (nonhomogeneity) of flood risk has great practical significance — the use of at-site
flood data with inadequate coverage of both IPO epochs may result in biased estimates of
long-run flood risk.

A Bayesian regional flood model framework, based on hierarchical modelling concepts,
was developed to overcome the possible bias in long-run flood risk associated with a non-
homogeneous flood record. Importantly, the model allows for the consideration of intersite
correlation. Bayesian methods were used to enable a rigorous treatment of uncertainty
in the flood regionalisation problem. The Gibbs sampler was used to infer uncertainty
in the regional model parameters, while importance-sampling-based procedures were de-
veloped to compute the Bayesian predictive distribution and the posterior distribution
of quantiles at a new site, which may be ungauged or gauged. This represents the first
truly-general Bayesian solution for combining regional and gauged information in flood
frequency analysis.

The flood data from eastern Australia were partitioned into four regions and analysed
using the Bayesian hierarchical regional model. The (correlated-site) regional model found
significant differences (at the 10% level) in the regional means for the two regions in NSW.

The regional standard deviations showed significant differences for the two regions in Qld,



ABSTRACT xi

but these differences were opposite in sign, with IPO-positive standard deviations being
greater than IPO-negative values. The equivalent gauged length provided by the regional
model had a maximum of 4 to 8 years.

There is a large overlap in the probability limits between the IPO-positive and IPO-
negative regional distributions for a flood quantile. However, because the regional model
errors for the IPO phases are highly correlated, the difference in IPO-positive and IPO-
negative quantiles is likely to be significant. For larger return periods, the opposite-in-sign
differences in the regional mean and standard deviation may reduce the resultant IPO-
related differences (in discharge).

The value of the regional model was demonstrated by pooling the regional information
with the information in short gauged records at selected sites in each region. The pooled
at-site flood frequency distribution provided substantial improvements over the gauged
record alone (in terms of prediction limits and bias). Indeed, this was especially evident
in a situation where a shortened (10-year) gauged record was found inconsistent with the
true (long-run) gauged record — the shortened gauged record consisted mainly of years
from the IPO-positive epoch. These results suggest that the use of the regional model
may protect against bias in long-run flood risk at sites with short records sampled largely

in one IPO epoch.



